首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20011篇
  免费   1727篇
  国内免费   1017篇
电工技术   381篇
综合类   1415篇
化学工业   4750篇
金属工艺   678篇
机械仪表   1416篇
建筑科学   693篇
矿业工程   821篇
能源动力   1356篇
轻工业   1109篇
水利工程   336篇
石油天然气   6249篇
武器工业   327篇
无线电   237篇
一般工业技术   1529篇
冶金工业   577篇
原子能技术   262篇
自动化技术   619篇
  2024年   40篇
  2023年   322篇
  2022年   485篇
  2021年   581篇
  2020年   591篇
  2019年   608篇
  2018年   543篇
  2017年   636篇
  2016年   814篇
  2015年   812篇
  2014年   1085篇
  2013年   1292篇
  2012年   1371篇
  2011年   1525篇
  2010年   1091篇
  2009年   976篇
  2008年   857篇
  2007年   1136篇
  2006年   1217篇
  2005年   1094篇
  2004年   929篇
  2003年   828篇
  2002年   756篇
  2001年   576篇
  2000年   501篇
  1999年   413篇
  1998年   353篇
  1997年   268篇
  1996年   250篇
  1995年   224篇
  1994年   143篇
  1993年   97篇
  1992年   71篇
  1991年   58篇
  1990年   59篇
  1989年   32篇
  1988年   23篇
  1987年   19篇
  1986年   22篇
  1985年   8篇
  1984年   14篇
  1983年   4篇
  1982年   3篇
  1981年   9篇
  1980年   5篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1959年   5篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
The capture of particles by charged droplets was simulated by considering the electrostatic interactions of droplet-droplet and droplet-particle. The results indicate that the electrostatic repulsion between droplets leads to a dynamic accumulation mode of particles. However, the droplet spacing has an insignificant effect on the capture efficiency when the electrostatic deposition predominates. The increase of droplet charge remarkably improves the capture efficiency, in which the capture of fine particles accounts for the largest proportion. Compared to the droplet charge, the droplet size shows a limited improvement in the capture efficiency. Reducing the droplet velocity prolongs the capture time instead of enhancing the capture capacity per unit time, thereby improving capture efficiency.  相似文献   
12.
高静娜  李强  高颖  李建辉  王葛 《钢铁》2019,54(10):66-71
 大直径厚壁气瓶内部淬火时的流动换热过程极其复杂,受到多种因素的影响,而研究气瓶内部压强和温度的变化规律对改善流动换热效果、提高产品组织性能具有重要的理论指导意义。以914 mm厚壁气瓶和瓶内流体为研究对象,建立了二维等效流 固耦合模型;采用多喷嘴系统对气瓶内外进行喷水淬火,研究了气瓶总长、喷水流速及淬火时间对瓶内压强及内壁温度的影响,通过间歇淬火试验验证了数学模型的正确性。结果发现,气瓶长度对瓶内压强和瓶壁温度的影响显著,喷水流速次之,当喷水流速大于8 m/s后,水量对瓶壁的冷却效果大大降低;气瓶内壁长度方向的温度梯度分别随气瓶总长的增加和淬火时间的延长而减小,但基本不受喷水量的影响。  相似文献   
13.
14.
The aim of this study was to investigate the structure and corrosion resistance of amorphous, amorphous‐crystalline, and crystalline Mg67Zn29Ca4 alloy for biodegradable applications. This paper presents a preparation method and results of the structural characterization and corrosion resistance analysis of the material. Samples were prepared in the form of 3 mm diameter rods. The structure of the alloy was examined with the use of X‐ray diffractometry and scanning electron microscopy. The thermal properties of the samples were examined with differential scanning calorimetry (DSC). Results of DSC analysis were used to determine heat treatment temperatures, allowing to obtain different fractures of crystalline phase in the material. Corrosion resistance of heat‐treated samples was investigated by immersion tests and electrochemical measurements performed in the simulated body fluid. The X‐ray diffraction results confirmed that the prepared Mg67Zn29Ca4 alloy's structure is fully amorphous. After heat treatment, samples with different fractions of amorphous phase in the structure were obtained. Immersion tests of the samples showed that the structure significantly influenced corrosion resistance in examined materials. It should be pointed out, that certain amounts of crystalline phase in amorphous matrix can greatly improve the corrosion resistance of Mg67Zn29Ca4 alloy.  相似文献   
15.
There is a lack of reliable biomarkers for disorders of the central nervous system (CNS), and diagnostics still heavily rely on symptoms that are both subjective and difficult to quantify. The cerebrospinal fluid (CSF) is a promising source of biomarkers due to its close connection to the CNS. Extracellular vesicles are actively secreted by cells, and proteomic analysis of CSF extracellular vesicles (EVs) and their molecular composition likely reflects changes in the CNS to a higher extent compared with total CSF, especially in the case of neuroinflammation, which could increase blood–brain barrier permeability and cause an influx of plasma proteins into the CSF. We used proximity extension assay for proteomic analysis due to its high sensitivity. We believe that this methodology could be useful for de novo biomarker discovery for several CNS diseases. We compared four commercially available kits for EV isolation: MagCapture and ExoIntact (based on magnetic beads), EVSecond L70 (size-exclusion chromatography), and exoEasy (membrane affinity). The isolated EVs were characterized by nanoparticle tracking analysis, ELISA (CD63, CD81 and albumin), and proximity extension assay (PEA) using two different panels, each consisting of 92 markers. The exoEasy samples did not pass the built-in quality controls and were excluded from downstream analysis. The number of detectable proteins in the ExoIntact samples was considerably higher (~150% for the cardiovascular III panel and ~320% for the cell regulation panel) compared with other groups. ExoIntact also showed the highest intersample correlation with an average Pearson’s correlation coefficient of 0.991 compared with 0.985 and 0.927 for MagCapture and EVSecond, respectively. The median coefficient of variation was 5%, 8%, and 22% for ExoIntact, MagCapture, and EVSecond, respectively. Comparing total CSF and ExoIntact samples revealed 70 differentially expressed proteins in the cardiovascular III panel and 17 in the cell regulation panel. To our knowledge, this is the first time that CSF EVs were analyzed by PEA. In conclusion, analysis of CSF EVs by PEA is feasible, and different isolation kits give distinct results, with ExoIntact showing the highest number of identified proteins with the lowest variability.  相似文献   
16.
This paper presents the results of numerical and experimental performance evaluation of the rotary tubular spool valve. The aim of this work is to develop further the novel design of the tubular spool valve by confirming experimentally the validity of the simulation model and its results, thereby proving the valve's potential to represent a feasible and more efficient alternative to conventionally used translation spool valves avoiding the use of two stage valve configurations. In this research the valve performance is assessed through numerical modelling and experimental studies of its metering characteristic and pressure losses. This paper demonstrates that the used valve model yields the results, which agree well with the conducted experimental study. Therefore, validation of the numerical model and the modelling results in the form of theoretical valve characteristics was accomplished. Firstly, the paper presents details of a numerical approach employed to evaluate valve performance and then analyzes the simulation results. Next, the valve performance is experimentally validated by testing a prototype valve on a hydraulic test rig capable of measuring the volume flow rate, pressure levels in up- and downstream lines of the valve across the entire spool angular stroke. Initially, average discrepancies between modelling and test results were 52.46% for the metering and 82.78% for the pressure loss characteristics. Correcting the model geometry aimed at eliminating differences between the valve model and the practically used prototype-test rig system enabled reduction of the error between experiment and modelling by 47.75% for the pressure loss function. This confirmed validity of the simulated characteristics of the valve. The benchmark comparison of pressure losses confirmed average 71.66% energy dissipation reduction compared to the industry-available analogue valve.  相似文献   
17.
Computational fluid dynamics (CFD) models were employed to investigate flow conditions inside a model reactor in which yield stress non‐Newtonian liquid is mobilized using submerged recirculating jets. The simulation results agree well with the experimental results of active volume in the reactor obtained using flow visualization by the authors in a previous study. The models developed are capable of predicting a critical jet velocity (vc) that determines the extent of active volume obtained due to jet mixing. The vc values are influenced both by the rheological properties of the liquid and the nozzle orientation. The liquid with higher effective viscosity leads to higher vc for a downward facing injection nozzle. However, an upward facing injection nozzle along with a downward facing suction nozzle generates enhanced complementary flow fields which overcome the rheological constraints of the liquid and lead to lower vc.  相似文献   
18.
This study addresses the thermo‐diffusion and the diffusion‐thermo phenomena in a semi‐infinite absorbent channel whose walls are contracting/expanding, with heat source/sink effects. The governing partial differential equations with suitable boundary conditions are transformed to a system of dimensionless ordinary differential equations. An analytic solution of the problem has been found using a technique called homotopy analysis method (HAM). HAM gives consistently valid answers to the problem over an extensive variety of parameters and also provides better accuracy. To validate the analytical results, a comparison has been presented with a numerical solution calculated by using the parallel shooting method. The effects of dimensionless parameters, that is, deformation parameter, Reynolds number, Soret and Dufour numbers, and heat source/sink parameter on the expressions of velocity, temperature, and concentration profiles are analyzed graphically to understand the physics of the deformable channel. It has been noted that the velocity across the channel is higher for the expanding channel, as compared to that for the contracting channel. Also the Soret and Dufour number increases the temperature of the fluid, and decreases the concentration. The temperature profile has an increasing behavior in the case of heat source, and a decreasing behavior in the case of heat sink.  相似文献   
19.
在Fe-As(Ⅲ)-Cu(Ⅱ)-H2O体系中, 研究了酸性废水中As(Ⅲ)、Cu(Ⅱ)与金属铁粉的反应行为, 考察了反应过程中As在气、液、固三相中的分配比。结果表明, As(Ⅲ)和Cu(Ⅱ)离子被Fe还原为单质As和Cu后, As、Cu进一步结合成Cu5As2等金属间化合物, 从而促进As(Ⅲ)沉淀反应的发生, 且无AsH3生成。在反应时间40min、铁粉过量系数1.2、溶液初始pH=0.0、温度40 ℃、Cu/As摩尔比1.0条件下, As在气、液、固三相中的分配比分别为0、20.7%和79.3%, 沉砷率为79.3%。  相似文献   
20.
基于FLUENT软件的流体体积(VOF)模型研究了不同壁面滑移程度以及不同流道结构参数下4层等厚熔体通过层叠器倍增为8层熔体时,流道中熔体的分层情况变化。结果表明,壁面滑移程度的降低会促使熔体在上下壁面聚集,进而导致上下壁面处熔体层厚增加;汇流段与出口段间圆角半径、汇流段扩压角和平衡段长度这3个结构参数则只会影响熔体在左右壁面的聚集,进而影响各层熔体的尺寸精度,且其中扩压角的影响程度最大,平衡段长度次之,圆角半径的影响较小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号